Overcoming Paralysis
Mobility is something that most of us take for granted, yet an estimated one in fifty people live their lives with some kind of paralysis.
This can be a side-effect from a medical condition. Or an accident that injures the brain or spine can dramatically change our ability to move. Regardless of the cause, the result is the same. The body cannot respond to the instructions it normally receives from the brain.
This can fundamentally change a person's sense of identity. For some, paralysis can become a powerful new part of their persona but for others it strips them of their independence and the activities that helped define them. So can science help people re-discover their mobility? And what shape will the innovations take?
Living with paralysis
Jump media player
Media player help
Out of media player. Press enter to return or tab to continue.
TV presenter Sophie Morgan describes her life with paralysis
Transcript (PDF 66 Kb)
Life with paralysis is more than just dealing with being unable to move.
Patients can also experience chronic pain, disturbed senses and impaired bodily functions. Below the point of paralysis, the body becomes more easily damaged and slower to heal. Pressure sores, from constantly being seated, are a persistent problem.
People with paralysis are also at greater risk from the health effects of being immobile, like diabetes and cardiovascular disease; these are the likely consequence of being unable to exercise properly.
However, the imposed isolation of paralysis can be just as damaging as the health effects. A less accessible world can cause huge frustration. Instead of being viewed simply as a person, paralysed people often feel defined by their wheelchair.
Developments like lightweight wheelchairs have help paralysed people to cope better with their immobility, but science is developing new solutions that could do far more to put patients back in control.
Putting the brain back in control
AFP/Getty Images
Brain-controlled interfaces allow people to manipulate technology with just their thoughts.
The ultimate goal would be a cure for paralysis but medical scientists don't think this is very close. So scientists are developing innovations that could help bypass the brain's problems sending messages to the muscles.
Brain-controlled interfaces
Specialised headgear or implants allows the user to manipulate technology .They work by detecting electrical impulses generated in the brain. This could allow people to use complex devices without need needing to move at all.
Nerve stimulation technology
By stimulating nerves with electrical currents, scientists hope they can create new 'messaging' pathways which, in combination with rehabilitation, could restore some movement to patients.
Regenerative medicine
The human body is built of cells with a specific role; nerve cells, liver cells, muscle cells - and that role is fixed. However stem cells can transform into any tissue. So theoretically it's possible to replace or regenerate damaged nerve cells in order to restore their function. It could be possible to repair the communication between brain and muscles with this approach.
These are all highly specialised areas of research, none solely developed to treat paralysis. However their application to paralysis is exciting because pulling together work from different fields could produce life-changing breakthroughs.
The wearable robot
Battery/Computer
Suit controls
Joints
Straps/Harnesses
Adjustable legs
The robotic exoskeleton is an example of many different technologies being brought together to help paralysed people. This wearable robotic suit supports and helps the body move by automatically balancing itself and interpreting shifts in weight into mechanical movements . The next breakthrough might incorporate neural interfaces to bypass the physical controls. This could help people with upper body paralysis and assist even more people afflicted with paralysis.
Source:bbc
No comments:
Post a Comment